TAMS 81622 PCI GPIO Card for Linux

Installation & Operation Instructions

TAMS 81622 PCI GPIO Card Installation & Operation Instructions

Test & Measurement Systems Inc. 750 14th Street SW Loveland, CO 80537 USA

Telephone Fax Web Site Email (970) 669 6553 (970) 669 3090 www.tamsinc.com info@tamsinc.com

Copyright © Test & Measurement Systems Inc. 2000-2003

Contents

Unpacking your product Overview of the TAMS 81622 GPIO Interface
Overview of the TAMS 81622 GPIO Interface
Installing the Interface
Driver Installation
Interface Configuration 8
Related Software Documentation 11
Standard Instrument Control Library for Linux
BASIC For Linux Additional GPIO Documentation Online
Additional Of TO Documentation Online
Technical Information 12
Connector Pinouts
TAMS 81622 Enhancements beyond the HP 2074/5 14
TAMS 81622 PCI DMA
TAMS 81622 PCTL Delay
Booting After Configuration Changes
Appendix A: Wiring 17
Appendix B: File Locations
Appendix C: TAMS 61622 SICL Extensions 21
Warranty Information

General Information

Unpacking Your Product

When you open your TAMS GPIO Card shipment, examine its contents.

Note: The name of the product you have purchased is the TAMS 81622 (GPIO Card for Linux). It includes the TAMS 622-66501 GPIO card and the t61622 card driver for Red Hat Linux. See the ReadMe for the version supported.

Please complete the registration card and return it to TAMS.

Overview of the TAMS 81622 GPIO Interface

This guide explains how to install and configure the TAMS 81622 GPIO (General Purpose Input Output) interface.

GPIO is a parallel interface that is flexible and allows a variety of custom connections. A PCI expansion slot is required to accommodate the GPIO interface card.

The TAMS GPIO card has a rotary DIP switch on the upper edge to set the unique identifier for the card. This is the only switch that needs to be set prior to installing the card. All other configuration is done in software.

Since the configuration of the GPIO interface (aside from setting the unique card identifier) is done in software, rather than using DIP-switches or jumpers, this guide also provides an explanation of the configuration process as it relates to SICL. A detailed description of the TAMS GPIO's functionality is included to aid in this configuration process.

The TAMS 81622 provides 16 bit data exchange with peripheral devices that do not support more common interface protocols like HP-IB or RS-232. Connection flexibility is augmented in the TAMS GPIO interface by extra status and control lines, a choice of handshake methods, several data-latching options, and selectable data width and polarity.

There are two basic modes for the data ports in the TAMS GPIO interface. The TAMS GPIO can be configured like the HP 98622 GPIO interface, which is called *Compatibility Mode*. Alternately, the TAMS 81622 can be configured with a bidirectional data port and auxiliary control lines, which is called *Enhanced Mode* and is the same as that supported by HP 2074/5.

Installing the Interface

This section explains how to install the TAMS GPIO interface in the computer. To complete the installation:

- 1. Make sure the computer is shut down properly, the power is turned off, and the power cord is unplugged.
- 2. Refer to the Owner's Guide of your computer for instructions on opening your computer and installing PCI boards.
- 3. The rotary DIP switch on the upper edge of the TAMS 622-66501 card should be set to the PCI slot number the card is going to reside in. If you have multiple TAMS 622-66501 cards installed in a single machine, it is important that the rotary DIP switches each be set to a unique number, which is guaranteed if you set the switch to the slot number. (Be sure to note the position of the rotary DIP switch, as you will need to know this when you configure the card.)
- 4. Install the GPIO interface in the PC by plugging the card into the PCI slot.
- 5. Follow the instructions being careful to handle the TAMS 622-66501 board only by its metal bracket. Avoid contact with the edges. After the board has been plugged in and the retaining screw installed the computer should be reassembled.
- 6. Prepare and install the GPIO interface cable.

Note: The TAMS 622-66501 card is a PCI device. Unlike most EISA and ISA devices a PCI device does not require an I/O address or IRQ setting. These settings are handled automatically.

Driver Installation

Note: Driver installation assumes basic knowledge about software installation procedures specific to the platform. Refer to your platform specific operating system documentation or contact your system administrator.

To install the t61622 driver it is not necessary for the TAMS 622-66501 interface card(s) to be present in the system.

Note: You must have root permission to install the software. In addition, you must have permission to write to the directories listed in Appendix B. Installation of the TAMS GPIO driver (T81622) also requires that the TAMS I/O Libraries (T82091) are already installed.

- 1 Make sure that the I/O Libraries (T82091) for Linux are installed.
- 2 Insert the installation CD-ROM into the drive and wait for the busy light to remain off.
- 3 Mount the CD-ROM. For example:

/bin/mount /dev/cdrom /mnt/cdrom

On some systems this step will be unnecessary since the Linux system will mount the CD-ROM automatically.

/dev/cdrom is the device file for your CD-ROM drive and /mnt/cdrom is a directory used as a mount point.

- 4 Change to the directory where the driver is.
- 5 Use RPM to install the driver. Architecture-specific versions of the software have been provided for systems running the supported kernels; the whichrpm.sh program returns the name of the correct RPM for your system. (Note the use of backquotes (') rather than single quotes (').)

/bin/rpm -i `./whichrpm.sh`

If this an upgrade over an existing version use the "-U" instead of "-i":

/bin/rpm -U `./whichrpm.sh`

- 6 The T81622 RPM will automatically load the t61622 kernel module and build the required device files.
- 7 Once the installation is complete, unmount the CD.

```
cd /
/bin/umount /dev/cdrom
```

8 Once the CD is unmounted, you may remove the media from the drive and store it in a safe place.

In general, the installation procedure places the files in the necessary directories by default. Appendix B is a reference for the Linux systems administrator, who might wish to know where these files are placed.

You will still need to configure the new TAMS GPIO card as a SICL interface card, as covered in the next section.

Interface Configuration

After installation of the driver software and loading of the t61622 kernel module (handled automatically by the RPM package), the SICL configuration file /etc/opt/sicl/hwconfig.cf needs to be edited to reflect the new interface card. The version of SICL you are using includes the /opt/sicl/bin/iosetup program, this can be used in place of manually editing the hwconfig.cf file. You will still want to refer to this section for a description of the fields.)

After configuration, the system does NOT need to be rebooted, nor does the driver module need to be reloaded. However, the SICL iclear function should be used after making changes to ensure that the configuration changes have taken effect. See the man page on iclear (1).

For further configuration information, see the "Installing and Configuring the I/O Libraries" chapter of the I/O Libraries Installation and Configuration Guide for Linux.

For each TAMS 622-66501 card that you want to configure in your system, you need to add a line to the hwconfig.cf file. While most users do not need to see or use this file directly, having used iosetup to make configuration changes, the fields and their respective meanings are important to know to properly use the GPIO card.

The content of each line is as follows:

```
<name> t61622 <location> <sig> <polarity> <mode> <read_clk> <delay>
```

The fields are defined as:

Logical Unit (Iu) The SICL Logical Unit number for this interface. This number must be unique for the SICL interfaces currently configured on this machine. A good choice for a logical unit number would be 12.

Symbolic Name (name) The unique SICL symbolic name. A good choice would be "gpio".

Location The unique ID specified by the rotary DIP switch on the TAMS 622-66501 being configured. This value is in the range 0-9

Signal (sig) Selects an Unix signal to be used by t61622 driver for interrupts. The value must be in decimal format and must be 0 or one of the values defined in the signal.h header file. Allowed signals are SIGIOT, SIGUSR1,

SIGUSR2 SIGIO or SIGURG. A value of 0 sets the default signal which is SIGURG. A signal is used by the t61622 driver to notify applications about kernel events. You can select an alternate signal to avoid conflicts within your application.

Polarity The logic polarity of various interface lines. A "0" sets active low polarity; a "1" sets active high. Each bit controls the polarity of one function: 0b<Pullup><Data Out><Data In><PSTS><PFLG><PCTL>. For example, 0b111000 activates the pull up resistors and sets both Data Out and Data In to active high, while PSTS, PFLG, and PCTL are all active low.

Mode A 2-digit hexidecimal number that onfigures handshake and data port mode. The most significant digit configures the data port.

HP 98622 compatibility mode:

0 = No DOUT clear at reset

1 = Clear DOUT at reset

Enhanced (bi-directional DINs) data port:

- 2 = No DOUT clear at reset
- 3 = Clear DOUT at reset

The least significant digit selects the PFLG/PCTL handshake mode.

- 0 = Full handshake
- 1 = Pulse handshake
- 2 = Async-Write/Pulse-Read handshake

For example, 0x10 specifies compatibility mode with DOUT cleared on reset and full handshaking.

Read Clock (read_clk) Determines when data input registers are latched. The first hex digit is for the upper (most significant) byte. Second hex digit is for the lower byte. Valid values for each digit are:

0 = when register is read

- 1 = at busy edge
- 2 = at ready edge

Delay The delay (settling time) from data write to PCTL set:

- 0 = 200 nanoseconds
- 1 = 400 nanoseconds
- 2 = 700 nanoseconds
- 3 = 1.2 microseconds
- 4 = 2 microseconds
- 5 = 5 microseconds
- 6 = 10 microseconds
- 7 = 50 microseconds

The t61622 driver provides an alternate delay configuration method. The delay may be expressed in nanoseconds or in microseconds. If the delay is expressed in nanoseconds the decimal value representing that delay should be suffixed with "ns". If the delay is expressed in microseconds the decimal value representing delay should be suffixed with "us". A decimal point is allowed. The minimum delay is 90ns and maximum delay is 245us. Examples: 150ns, 2500ns (same as 2.5us), 1.15us, 90us.

Related Software Documentation

Standard Instrument Control Library for Linux

To configure the TAMS GPIO interface for the Standard Instrument Control Library (SICL) for Linux, see the "Installing and Configuring the I/O Libraries" chapter of the I/O Libraries Installation and Configuration Guide for Linux.

To develop SICL I/O applications for the TAMS card on Linux, see the "Using GPIO with SICL" chapter of the *SICL User's Guide*. SICL functions, including those that are GPIO specific, are fully defined in the *SICL User's Guide*. The TAMS card also provides functionality enhancements.

BASIC for Linux

The TAMS GPIO interface is supported on version 11.0 of TAMS BASIC for Linux.

When the GPIO interface has been configured for SICL, it is also ready to be used from within BASIC for Linux. BASIC users will need to know the SICL Logical Unit Number that has been assigned to the interface during configuration, as this will correspond to the Select Code used to identify the interface in their BASIC programs.

More information for the use of the GPIO interface is found on the TAMS BASIC Documentation CD. Relevant sections are the "Linux Highlights" section of the *BASIC Language Reference*, and the GPIO chapter of the *BASIC Interface Reference* on the CD.

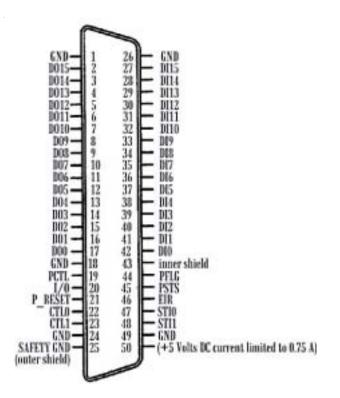
Additional GPIO Documentation Online

Technical articles and other additional GPIO documentation can be found on the TAMS web site:

```
http://www.tamsinc.com/support/
```

Technical Information

This section provides a detailed, functional description of the TAMS 81622 GPIO interface. You will need to understand this information in order to set the appropriate configuration values. This information should also be helpful when you are preparing and installing the GPIO cable.


After you have read this section and decided how you want to configure the TAMS 622-66501 card, refer to your software documentation to configure your I/ O application software for the TAMS 622-66501 card. (See the "Related Software Documentation" section of this guide.)

This section contains the following :

- Connector Pinouts
- Data Lines
- Peripheral Information Lines:
 - Peripheral Control and Peripheral Flag Handshake Lines (PCTL and PFLG)
 - Input/Output Direction Control Line (I/O)
 - Peripheral Status Line (PSTS)
 - Peripheral Reset Line (P_RESET)
 - External Interrupt Request Line (EIR)
 - Control Output Lines (CTL0 and CTL1)
 - Status Input Lines (STI0 and STI1)
- Direct Memory Access (DMA)

Connector Pinouts

The following figure shows you the Pinouts on the TAMS 622-66501 GPIO interface connector.

TAMS 622-66501 GPIO Connector Pinouts

Label	Line(s)
DI0 through DI15	Data Input
DO0 through DO15	Data Output
PCTL and PFLG	Peripheral Control and Peripheral Flag handshake
VO	Input/Output direction control
PSTS	Peripheral Status
P_RESET	Peripheral Reset
EIR	External Interrupt Request
CTL0 and CTL1	Control Output
STI0 and STI1	Status Input
PIN 50	+5 Volts DC current limited to 0.75 A

TAMS 81622 Enhancements beyond the HP 2074/5

TAMS 81622 PCI DMA.

The TAMS 81622 interface has two modes of transfer: DMA and interrupt driven. A program may control transfer mode used by calls to *ihint()*. See the *SICL Reference Manual* for more information. There are six values that could be specified to this call:

- I_HINT_USEPOLL
- I_HINT_USEINTR
- I_HINT_USEDMA
- I_HINT_IO
- I_HINT_SYSTEM
- I_HINT_DONTCARE

If I_HINT_USEPOLL is specified, interrupt mode (I_HINT_USEINTR) is used. This is due to the fact that with advances in hardware and operating systems, there is no situation that using polled mode would have an advantage over interrupt mode. Interrupt mode is not noticeably slower than polled and it releases the processor while waiting for interrupts greatly improving system overall performance.

If I_HINT_USEINTR is used, all inbound and outbound transfer will be performed in interrupt mode. Each transfer of a single 8 or 16-bit data item (depending on configured GPIO width) will be initiated, and the processor freed to perform other tasks. Once the transfer is complete, the processor will initiate another transfer.

If the transfer is inbound and a termination and/or end character is specified, the driver will check if the termination condition occurred before initiating another transfer.

```
The igpioctrl(id, I_GPIO_READ_EOI, <end_char>) and itermchr(id, <term_chr>) calls control end and termination characters.
```

If I_HINT_USEDMA is specified, DMA will always be used for outbound transfer. For inbound transfer, if no termination nor end character is specified, DMA is used. Otherwise interrupt mode (I_HINT_USEINTR) will be used. This will only happen for the current transfer. No call to *ihint()* is required to restore DMA transfer mode. For the next transfer, DMA will be resumed for outbound and if no termination and/or end character is specified, for inbound transfers.

If I_HINT_IO or I_HINT_SYSTEM or I_HINT_DONTCARE is specified, then DMA (I_HINT_USEDMA) will be used. The I_HINT_IO is intended for best transfer performance and I_HINT_SYSTEM for best system performance executing other applications. The fact is that both qualities are delivered best when DMA is used.

However, there is a difference between above three modes and I_HINT_USEDMA. It is possible for PCI bus DMA transfers to fail due to hardware or OS instabilities. If this happens, the three modes described in this paragraph will switch from that moment to interrupt mode (I_HINT_USEINTR) until the computer is rebooted. An explicit *ihint()* call with I_HINT_USEDMA will always use DMA; and, if a DMA bus error occurs, the iread or iwrite will return with an error. That said, the PCI bus DMA error is very unlikely to occur.

TAMS 81622 PCTL delay.

The TAMS 81622 is much more flexible than any other available GPIO interface. With the HP 2074/5 interface a user has a choice of one of eight delay time values. The gaps between those values are significant and prevent performance optimization. The TAMS 81622 accepts values directly in nanoseconds. The range extends from 90 nanoseconds to 245000 nanoseconds (245 microseconds) allowing optimal transfer performance according to the length of cable used. In addition, the time specified is applied with accuracy at any mode of transfer, while other available GPIO interfaces add as much as 500 ns when different modes are used. This caused users to configure more PCTL time than actually required in order to compensate for worst possible transfer mode cases.

The TAMS 81622 PCTL delay is configurable via the SICL iosetup utility or it may be changed at any time from within an application by a call to $igpioctrl(id, I_GPIO_PCTL_DELAY, <val>)$ where <val> could be one of eight HP 2074/5 compatible values, or directly a value in nanoseconds between 90 and 245000 inclusive.

The eight (0-7) HP 2074/5 compatible values are interpreted as follows:

0 - 200ns, 1 - 400ns, 2 - 700ns, 3 - 1.2 $\mu s,$ 4 - 2 $\mu s,$ 5 - 5 $\mu s,$ 6 - 10 $\mu s,$ 7 - 50 $\mu s.$

Booting After Configuration Changes

When the TAMS GPIO card is reconfigured via either the SICL configuration utility or by manually editing hwconfig.cf the system does not require rebooting, nor does the driver module need to be reloaded, for the changes to

take effect. Changes take effect when a session on a newly configured interface is started for the first time within a process.

Care should be taken when a running application is using the TAMS GPIO interface while it is reconfigured.

If, for example, a polarity setting is changed on an interface while an application is using it, it may take effect in the middle of a transfer causing undesired effects. However, no fatal effects such as a system crash or device hang will be caused.

It is safest to perform an iclear on the interface after modifying its configuration to guarantee that it is in a known state.

Appendix A: Wiring

Data Lines

There are 32 data lines on the TAMS GPIO: 16 designated as data input, and 16 designated as data output. Color codes are provided for the TAMS 622-001 GPIO cable and the HP 5061-4209 GPIO cable.

Data Input Lines

The 16 data input lines are labeled DI0 through DI15. The following table lists the connector pin numbers and cable wire color codes for the data input lines.

Label	Pin No.	622-001	5061-4209
D10	42	White on Grey	Black
DI1	41	Brown on Blue	Brown
D12	40	White on Violet	Red
DI3	39	White on Blue	Orange
D4	38	White on Green	Yellow
D15	37	White on Yellow	Green
D16	36	White on Orange	Blue
DI7	35	White on Pink	Violet
DI8	34	Brown on Green	White/Brown/Red
D19	33	Brown on Yellow	White/Brown/Orange
D110	32	Brown on Orange	White/Brown/Yellow
DI11	31	Brown on Pink	White/Brown/Green
DI12	30	Tan on Grey	White/Red/Orange
DI13	29	Tan on Violet	White/Red/Yellow
DI14	28	Tan on Blue	White/Red/Green
DI15	27	Tan on Green	White/Red/Blue

Data Input Lines

Data Output Lines

The 16 data output lines are labeled DO0 through DO15. The following table lists the connector pin numbers and wire color codes for the data output lines.

Label	Pin No.	622-001	5061-4209
D10	42	White on Grey	Black
DI1	41	Brown on Blue	Brown
DI2	40	White on Violet	Red
DI3	39	White on Blue	Orange
DI4	38	White on Green	Yellow
D15	37	White on Yellow	Green
D16	36	White on Orange	Blue
DI7	35	White on Pink	Violet
DI8	34	Brown on Green	White/Brown/Red
D19	33	Brown on Yellow	White/Brown/Orange
DI10	32	Brown on Orange	White/Brown/Yellow
DI11	31	Brown on Pink	White/Brown/Green
Dl12	30	Tan on Grey	White/Red/Orange
DI13	29	Tan on Violet	White/Red/Yellow
DI14	28	Tan on Blue	White/Red/Green
DI15	27	Tan on Green	White/Red/Blue

Data Output Lines

The following table lists the connector pin numbers and wire color codes for the peripheral information lines.

Label	Pin No.	622-001	5061-4209
GRD	1	Yellow on Tan	
GRD	18	Violet on Brown	
PCTL	19	Tan on White	White/Grey
I/O	20	Grey on Brown	White/Black/Brown
P_RESET	21	Orange on Pink	White/Black/Red
CTL0	22	Brown on Tan	White/Red/Violet
CTL1	23	Pink on Tan	White/Red/Grey
GRD	24	Brown on White	
Safety GRD	25	Orange on Tan	
GRD	26	Tan on Yellow	
Safety GRD	42	Brown on Violet	
PFLG	44	White on Tan	Grey
PSTS	45	Brown on Grey	White/Black/Grey
EIR	46	Pink on Orange	White/Brown/Grey
STI0	47	Tan on Brown	White/Brown/Blue
STI1	48	Tan on Pink	White/Brown/Violet
GRD	49	White on Brown	
+5 (fused)	50	Tan on Orange	

Peripheral Information Lines

Appendix B: File Locations

The installation procedure places files in the following directories :

File	Location	Description
t61622.so	/opt/sicl/lib	SICL shared Tulip library
t61622.o	/lib/modules/ <kernel version>/kernel/drivers/char</kernel 	kernel driver module
t61622	/etc/init.d	stop/start script for (un)loading the kernel module and teh (un)creating the device files
S95t61622 K05t61622	/etc/rc[345].d	link to /etc/init.d/t61622
t61622.readme	/usr/share/doc/T81622-1.0	readme file
t61622.0	/dev	special device file for card with ID0
t61622.n	/dev	special device file for card with ID n

Appendix C: TAMS 81622 SICL Extensions

All of the TAMS 81622 SICL extension functions are implemented by using the header file t61622sicl.h and the standard SICL functions igpioctrl and igpiostat.

These two functions are described below:

IGPIOCTRL

Supported sessions:	interfa	ace
Affected by functions:	ilock,	itimeout

C Syntax

#include <sicl.h>
#include <t61622sicl.h>

int igpioctrl (id, request, setting);

INST id; int request; unsigned long setting;

IGPIOSTAT

Supported sessions:interface

C Syntax

#include <sicl.h>
#include <t61622sicl.h>

int igpiostat (id, request, result);

INST id; int request; unsigned long *result; The following are all of the TAMS 81622 SICL extensions and some examples of how to use them.

TAMS 81622 PCTL delay

The TAMS 81622 PCTL delay function provides an **extended PCTL delay control** that was not available before. Besides the standard 0-7 values for delay used with HP cards, the delay of the TAMS 81622 may be set directly in nanoseconds.

Examples:

Setting the PCTL delay to 560ns igpioctrl(id, I_GPIO_T61622_DLY_TM, 560) Reading the PCTL delay in nanoseconds igpiostat(id, I_GPIO_T61622_DLY_TM, &dtm)

Important time defines for the PCTL delay (in nanoseconds)

T61622_DLY_MIN	90	Minimum for a PCTL delay
T61622_DLY_STP	60	Hardware effective step
T61622_DLY_DFT	400	Value loaded on boot
T61622_DLY_MAX	245700	Maximum for a PCTL delay

TAMS 81622 Filtering

This feature allows filtering of DIN[0..15], STI0, STI1 and EIR lines for glitch rejection.

There are two different requests for this function:

I_GPIO_T61622_FLT_EN controls what groups are going to be enabled for filtering. The groups are DIN[0..15], STI[0..1] and EIR. This destroys the old setting and replaces it with the provided setting.

I_GPIO_T61622_FLT_TM sets the time in nanoseconds for the group or groups that are enabled. The time set is common for all of the lines within those groups. No individual lines can be controlled. The defines T61622_DIN, T61622_STI, and T61622_EIR control DIN[0..15], STI[1..0] and EIR groups respectively.

Examples:

Using I_GPIO_T61622_FLT_EN Enable DIN group for filtering igpioctrl(id, I_GPIO_T61622_FLT_EN, T61622_DIN); Read what groups are enabled for filtering igpiostat(id, I_GPIO_T61622_FLT_EN, &fen);

Using I_GPIO_T61622_FLT_TM

Set filtering to 1 μs (microsecond, 1000 nanoseconds) igpioctrl(id, I_GPIO_T61622_FLT_TM, 1000) Read the time set for filtering in nanoseconds igpiostat(id, I_GPIO_T61622_FLT_TM, &ftm)

Important time defines for line filtering (in nanoseconds)

T61622_FLT_MIN	30	Minimum filtering time
T61622_FLT_STP	60	Hardware effective step
T61622_FLT_DFT	150	Value loaded on boot
T61622_FLT_MAX	15300	Maximum filtering time

TAMS 81622 Polarity

This function allows for complex, individual polarity setting for **DIN**, **STI0**, **STI1**, **and EIR**. The polarity of nineteen lines (DIN[0..15], STI[0..1] and EIR) can be controlled independently. It enables interrupt control on either rising or falling edge of a line level transition.

For the DIN lines, interpretation and implementation of the polarity is identical to the standard GPIO DIN polarity as described in the SICL documentation.

For the STI and EIR lines, the standard GPIO interface does not provide polarity configuration. This is a TAMS 81622 extension to the HP GPIO.

To maintain maximum compatibility with the standard GPIO, the following rules apply:

- For STI and EIR lines, if their polarity is set to 0, their behavior is fully compatible with standard GPIO. If set to 1, polarity is reversed for these lines.
- For DIN lines, 81622 extensions allow the user to set the polarity for each line independently. Setting the DIN polarity with standard GPIO SICL igpioctrl (id, I_GPIO_POLARITY, setting) is still supported and will cause the setting or clearing of all the DIN lines' polarity with a single call. This is because the standard allows only for all of the DIN lines' polarity to be set at a time. This guarantees backwards compatibility.

Examples:

Setting polarity for only DIN6 and EIR lines

igpioctrl(id, I_GPIO_T61622_POL, T61622_DIN06 | T61622_EIR) Reading back the polarity setting igpiostat(id, I_GPIO_T61622_POL, &pol);

TAMS 81622 Latching

This function allows latching the levels of the lines to be enabled in the three different groups (**DIN[0..15]**, **STI0**, **STI1**, **and EIR lines**). The time at which the latching occurs depends upon the polarity of the line being latched.

- If the polarity is set to 0, the latch will occur on a LO to HI logical transition.
- If the polarity is set to 1, the latch will occur on a HI to LO logical transition.

This function has three different request codes:

- I_GPIO_T61622_LAT_EN controls which group of lines are enabled for latching, DIN[0..15], STI0, STI1 and/or EIR.
- I_GPIO_T61622_LAT_RD lets you read the latched lines.
- I_GPIO_T61622_LAT_CL clears the latched lines.

Examples:

Enable T61622_DIN06 and T61622_EIR

igpioctrl (id, I_GPIO_T61622_LAT_EN, T61622_DIN06 | T61622_EIR) Read what lines are enabled for latching igpiostat(id, I_GPIO_T61622_LAT_EN, &len) Read back what lines are latched igpiostat(id, I_GPIO_T61622_LAT_RD, &lat) Clear latched lines igpioctrl(id, I_GPIO_T61622_LAT_CL, lat)

TAMS 81622 line interrupt

This function controls which lines can cause an interrupt. **Interrupts on level transitions on DIN[0..15], STI[0..1] and EIR lines** can be controlled individually. When the interrupt occurs depends upon the polarity:

- If the polarity is set to 0, the interrupt occurs on logical LO to HI transitions
- If the polarity is set to 1, the interrupt occurs on logical HI to LO transitions.

If this function is combined with the TAMS 81622 latching function, then the interrupt will fire only once. If this is the case, the latched lines need to be cleared before other interrupts can happen from those lines.

If one or more interrupts occur, the interrupt handler is called with the "reason" parameter equal to I_INTR_GPIO_T61622 and the "sec" parameter is the mask of the lines that caused the interrupt.

The mask is always a subset of the following:

T61622_DIN | T61622_STI | T61622_EIR | T61622_RDY

Examples:

Enabling DIN4 line to interrupt igpioctrl(id, I_GPIO_T61622_INT_EN, T61622_INT_DIN04) Checking what lines can interrupt igpiostat(id, I_GPIO_T61622_INT_EN, &int)

TAMS 81622 Pull-up Resistors

I_GPIO_T61622_PUL controls if DOUT[0..15], CTL[0..1], PCTL, I/O, and PRESET lines are pulled up with 4.7k resistors to +5V. There is no control for individual lines. All lines are controlled at the same time.

Examples:

Turn all pull-ups ON igpioctrl(id, I_GPIO_T61622_PUL, 1) Check if pull-ups are on igpiostat(id, I_GPIO_T61622_PUL, &pull) Turn pull-ups OFF igpioctrl(id, I_GPIO_T61622_PUL, 0)

TAMS 81622 Board ID

The 81622 is equipped with a rotary DIP switch. Its purpose is the identification of each GPIO board on a system with multiple GPIO cards.

The user must set the switch position to a unique value for each card on the system and then can read its value by using the request **I_GPIO_T61622_CID** to check which physical card is associated with a specific opened session.

Examples:

Get the switch value igpiostat(id, I_GPIO_T61622_CID, &swID)

TAMS 81622 Handshake

The TAMS 81622 internal handshaking loop allows the testing/debugging of GPIO applications without requiring anything to be connected to the TAMS 622-66501 GPIO card.

This test mode only has an effect on handshaking transfers. If this mode is enabled, the PCTL/PFLG are set in a loop mode and, as a consequence, no external device is needed for the handshaking, because it is being generated internally by the TAMS 622-66501 card.

The user can turn the mode on or off by using the request **I_GPIO_TEST_ONLY.** If an invalid value is passed in it is ignored. The actual polarity of PCTL and PFLG lines does not affect the internal handshaking loop mode.

Examples:

Enable loop test mode

igpioctrl(id, I_GPIO_TEST_ONLY, T61622_HSHK_LOOP) Get test settings igpiostat(id, I_GPIO_TEST_ONLY, &test) Disable loop test mode igpioctrl(id, I_GPIO_TEST_ONLY, 0)

Important time defines for loop test mode

T61622_HSHK_LOOP	0x0000001	loop PFLG and PCTL
T61622_DLY_NONE	0x0000002	loop with no delay
T61622_HSHK_NONE	0x00000004	loop with no handshaking

TAMS 61622 DOUT read

The **I_GPIO_T61622_DOUT** reads the value of the DOUT lines. The value read is not affected by the DOUT polarity.

Example:

Get the DOUT value igpiostat(id, I_GPIO_T61622_DOUT, &dout)

TAMS 61622 Macros

The following is a table with all of the macro definitions passed to the TAMS 61622 SICL extension functions. Individual bits may be passed to select specific line(s).

T61622_DIN	0x0000FFFF	DIN[015] 16 bits
T61622_DIN_L	0x00000FF	DIN[07] 8 bits
T61622_DIN_U	0x0000FF00	DIN[815] 8 bits
T61622_STI	0x00030000	STI[01] 2 bits
T61622_EIR	0x00040000	EIR 1 bit
T61622_RDY	0x00080000	RDY 1 bit
T61622_MORE	0x00100000	used inside driver only
T61622_ALL	0x000FFFFF	all of above 20 bits

Individual bits for DIN and STI

T61622 DIN00	0x00000001
T61622 DIN01	0x0000002
T61622_DIN02	0x00000004
T61622_DIN03	0x0000008
T61622_DIN04	0x0000010
T61622_DIN05	0x0000020
T61622_DIN06	0x00000040
T61622_DIN07	0x0000080
T61622_DIN08	0x00000100
T61622_DIN09	0x00000200
T61622_DIN10	0x00000400
T61622_DIN11	0x0000800
T61622_DIN12	0x00001000
T61622_DIN13	0x00002000
T61622_DIN14	0x00004000
T61622_DIN15	0x00008000
T61622_STI0	0x00010000
T61622_STI1	0x00020000

27

ONE YEAR LIMITED WARRANTY

Test & Measurement Systems, Inc. warrants to the purchaser that the Interface card will be free of all defects in material and/or workmanship for one year from the date of shipment to the customer.

In the event of malfunction or failure attributable directly to faulty material and/or workmanship, TAMS will at it's option, repair or replace the defective product or components, to whatever extent it shall deem necessary to restore the product or component, to proper operating condition. TAMS may at its option repair or replace, a defective unit with a new or refurbished unit.

The customer shall be solely responsible for the failure of any TAMS product, resulting from accident abuse, or misapplication of the product, and TAMS assumes no liability as a consequence of such events under the terms of this warranty.

While TAMS has made every effort to provide clear and accurate technical information about the application of this product, TAMS assumes no liability for any events arising out of the use of this technical information.

This Warranty gives you specific legal rights and you may also have other rights which vary from state to state, and from country to country.

This Warranty is in Lieu of all other express warranties which now or hereafter might otherwise arise with respect to this product. ANY AND ALL IMPLIED WARRANTIES OF MERCHANT ABILITY AND FITNESS FOR PARTICULAR USE, SHALL HAVE NO GREATER DURATION THAN THE PERIOD FOR THE EXPRESS WRITTEN WARRANTY APPLICABLE TO THIS PRODUCT AS SHOWN ABOVE, AND SHALL TERMINATE AUTOMATICALLY AT THE EXPIRATION OF SUCH PERIOD.

(Some states and countries do not allow limitations on how long an implied warranty lasts, so this limitation may not apply to you) No action shall be brought for breach of any implied or express warranty after one year subsequent to the expiration of the period of the express written warranty.

Incidental and consequential damages caused by malfunction, defect, or otherwise and with respect to breach of any express or implied warranty, are not the responsibility of TAMS, and to the extent permitted by law, are hereby excluded both for property and to the extent not unconscionable, for personal injury damage. (Some states do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you.)

TAMS 81622 GP-IO Card for Red Hat Linux Printed in USA E011.01.03 Part#81622-90004